Connect with us

Science News

A New Study of Dead Suns Finds How Life on Earth Might Not Exist Without Them – ScienceAlert

Carbon. You might not think about it very much, but you wouldn’t be alive without it. It’s the main ingredient in organic compounds found in all living organisms on Earth, but exactly where carbon comes from has been a matter of some debate.

Published

on

post featured image

Carbon. You might not think about it very much, but you wouldn’t be alive without it. It’s the main ingredient in organic compounds found in all living organisms on Earth, but exactly where carbon comes from has been a matter of some debate.
Now, new research has found that the primary source of carbon in the Milky Way is white dwarf stars – the dead cores of stars that were once a lot like our Sun.
It’s well understood that elements heavier than hydrogen and helium are forged by stars across the Universe. The fusion of elements in the cores of stars can build elements as heavy as iron via a process called stellar nucleosynthesis; even heavier elements are created through processes such as the neutron capture seen in massive supernovae.
Carbon is formed via the triple-alpha process, in which three helium nuclei fuse together to form carbon, a process that takes place towards the end of a star’s lifespan.
But it was unclear to astronomers whether the abundance of carbon in our galaxy was largely the result of Sun-sized stars shedding their skins as they quietly collapsed into white dwarfs, or if it was blasted out by far more massive stars as they went supernova.
A team of astronomers led by Paolo Marigo of the University of Padova in Italy went looking for answers in open star clusters – groups of up to thousands of stars that are all more or less the same age, formed in the same molecular cloud.
In five molecular clouds, the team identified the white dwarfs, using observations obtained by the W. M. Keck Observatory in Hawaii in 2018. These observations delivered the star spectra – ‘fingerprints’ of light that can be decoded to reveal information about the star, such as temperature (and therefore age), chemical composition, and surface gravity (and therefore mass).
“From the analysis of the observed Keck spectra, it was possible to measure the masses of the white dwarfs. Using the theory of stellar evolution, we were able to trace back to the progenitor stars and derive their masses at birth,” explained astrophysicist Enrico Ramirez-Ruiz of the University of California Santa Cruz.
The mass of a dead star is known to be linked to that of its progenitor. It makes sense – the more massive a white dwarf, the more massive the progenitor star that produced it. These masses aren’t exactly the same, though, since the progenitor star ejects so much material into space. This relationship between the two masses of the white dwarf is known as the initial-final mass relation.
In white dwarfs, the mass relation can be calculated if you have a white dwarf’s spectrum. As dead stars, they are no longer fusing nuclei, and are therefore cooling; any heat a white dwarf retains is residual, and will slowly radiate out into space over billions of years. If we know its mass, temperature and chemical composition, we can calculate the rate of this cooling. In turn, this allows astronomers to calculate the white dwarf’s age – how long since core collapse.
This is where the open clusters come into the picture. Since we know how old the clusters are, we can subtract the time since core collapse from the age of the cluster to find out how old the star was when it died – and this information can be used to calculate the initial mass of the progenitor star.
But when the team applied it to some of their white dwarfs – specifically, those with a progenitor mass higher than about 1.5 times the mass of the Sun – they noticed something really peculiar. The masses of the white dwarfs were higher than expected for the masses of their progenitors, what the team calls an initial-final mass relation kink.
“Our study interprets this kink in the initial-final mass relationship as the signature of the synthesis of carbon made by low-mass stars in the Milky Way,” Marigo said.
The team believes that the event takes place in white dwarf progenitor stars towards the ends of their lifespans. They fuse helium into carbon, deep in their cores. Then this carbon is transported to the surface, where it is blown off into space in relatively gentle stellar winds. Because the process happens so slowly, the star has time to gain mass in the core. It is this more massive core that collapses into a heavier-than-expected white dwarf.
Generally, this occurs in stars of more than about 2 solar masses, but it’s not seen in stars of less than 1.5 solar masses, which places a pretty good lower limit on the mass of carbon-spewing stars. Importantly, a look at similar stars in other galaxies helps us better understand the timing of dying stars dusting the Milky Way with carbon, making the progenitors of white dwarfs the most likely source.
This could also help us to understand what’s going on in distant galaxies, where we can’t make out individual stars. A carbon signature in the aggregate light can tell us about distant white dwarf populations.
And the research will also better help us understand how carbon gets seeded throughout the Milky Way – which, in turn, could have implications for the search for extraterrestrial life.
The research has been published in Nature Astronomy.

Click here to view the original article.

Science News

Rare “boomerang” earthquake detected under the Atlantic Ocean for the first time – CBS News

“This was completely opposite to how we expected the earthquake to look before we started to analyze the data,” one scientist said.

Published

on

post featured image

For years, scientists have been attempting to track an extremely rare “boomerang” earthquake. Now, they’ve recorded one in the ocean for the first time — and it’s even more bizarre than they expected. 
Earthquakes are the result of rocks breaking on a fault, which is a boundary between two plates. A “boomerang” earthquake, also known as a “back-propagating supershear rupture,” means the fracture travels away from the initial crack before returning to it at even faster speeds, scientists said. 

Click here to view the original article.

Continue Reading

Science News

Laser beams reflected between Earth and moon boost science – Phys.org

Dozens of times over the last decade NASA scientists have launched laser beams at a reflector the size of a paperback novel about 240,000 miles (385,000 kilometers) away from Earth. They announced today, in collaboration with their French colleagues, that the…

Published

on

post featured image

Dozens of times over the last decade NASA scientists have launched laser beams at a reflector the size of a paperback novel about 240,000 miles (385,000 kilometers) away from Earth. They announced today, in collaboration with their French colleagues, that they received signal back for the first time, an encouraging result that could enhance laser experiments used to study the physics of the universe.
The reflector NASA scientists aimed for is mounted on the Lunar Reconnaissance Orbiter (LRO), a…

Click here to view the original article.

Continue Reading

Science News

Starlink: SpaceX’s 100th mission may break an incredible reusability record – Inverse

SpaceX’s upcoming launch could raise the bar for reusing rockets.

Published

on

post featured image

SpaceX may be about to take another step in its plan to reuse space rockets.
The company is expected to send up its 11th batch of Starlink satellites in mid-August, sending up 58 craft from Space Launch Complex 40 at the Cape Canaveral Air Force Station in Florida. The mission is also expected to send up three SkySat imagine satellites for Planet as part of a ride-sharing agreement, after the company previously hitched a ride in a Starlink mission in June. The extra satellites will be used to h…

Click here to view the original article.

Continue Reading

Trending